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1. Introduction

As the space structures are employed to cover wide span
column free areas, they have a huge number of structural
elements and therefore, sufficient attention must be paid to
systematic designing of these structures. For this purpose,
design of space structures can be conveniently achieved by
employing optimization techniques. It is obvious that an
optimal design has a great influence on the economy and
safety of all types of the structures. In this case, optimizing
space structures results in more efficient structural
configurations. The present study is devoted to design
optimization of a specific type of space structures denoted as
scallop domes [1]. Configuration of scallop domes includes
alternate ridges and grooves that radiate from the centre. There
are many actual examples of scallop domes which are
constructed throughout the world.

In the recent years, much progress has been made in optimum

design of space structures by considering linear behavior [2-7].
It is observed that some trusses have nonlinear behavior even in
usual range of loading [7-9]. Therefore, neglecting nonlinear
effects in design optimization of these structures may be led to
uneconomic designs. In this study, scallop domes are designed
for optimal weight considering linear and nonlinear behaviors.
In this paper, optimization of scallop domes with linear and
nonlinear behaviors are denoted as linear optimization and
nonlinear optimization, respectively. In the case of nonlinear
optimization, geometrical and material nonlinearity effects are
taken into account. All of the structural optimization problems
have two main phases: analysis and optimization. In the
analysis phase, opensees [10] platform is employed. In the
optimization phase, particle swarm optimization (PSO) [11] is
utilized. PSO is a popular meta-heuristic optimization algorithm
and many successful applications of it have been reported in the
field of structural optimization during last years [12-16]. The
main drawback of PSO is a slow rate of convergence which
increases the computational burden of the optimization process.
In the present study, a computational strategy is proposed to
improve the computational performance of the PSO. In the
proposed enhanced particle swarm optimization (EPSO)
algorithm, the global search ability of the PSO is enhanced by
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employing the concept of cellular automata (CA) [17].
Basically, CA represents simple mathematical idealizations

of physical systems in which space and time are discrete and
physical quantities are taken from a finite set of discrete
values. Models based on CA provide an alternative and more
general approach to physical modeling rather than an
approximation [18-19]. In the proposed EPSO, the particles
are distributed on a small dimensioned grid and the artificial
evolution is evolved by a new velocity updating equation. In
which the velocity updating rule is defined by adding a new
cellular automata based term to the conventional equation. The
original PSO can not control the balance between exploration
and exploitation [20]. The proposed EPSO eliminates this
difficulty and also reduces the number of required structural
analyses during the optimization process compared with the
PSO algorithm.

All of the required programs are coded in MATLAB [21]. In
this paper, the design variables are cross sectional areas of the
structural elements. The design constraints involved here are
nodal displacements and element stresses constraints for linear
optimization, but serviceability checks (nodal displacements at
service loads) are involved only for nonlinear one. Two
illustrative examples presented and the numerical results
reveal that the nonlinear optimization of scallop domes results
in more efficient designs compared with the linear
optimization.

2. Scallop Domes

2.1. The Idea of Scallop Domes

The idea of scallop domes was proposed for the first time by
Nooshin et. al [1]. Consider the dome configuration, a
perspective view of which is shown in Figure 1a. This is a
single layer dome whose nodes lie on a spherical cap. The plan
view of the dome is shown in Figure 1b [1]. Now, consider the
dome configuration shown in Figure 1d. The plan view of this
dome is identical to that of the dome of Figure 1a, as given in
Figure 1b. Also, the borders of the segments in Figure 1d are
identical in shape to the ones in Figure 1a. The difference
between the domes of Figures 1a and 1d is that the segments
in Figure 1d are arched.

More specifically, in the case of the dome in Figure 1d, the
nodal points along every circumferential ring are raised
vertically such that the part of the ring between the borders in
each segment is turned into an arch. The arching effect is such
that: The nodal points on the segmental borders remain in their
original positions (in particular, the position of the crown of
the dome remains unchanged) and the rise of the arches
increases with distance from the crown of the dome. The
maximum rise for a circumferential ring, which occurs at the
middle of each segment, is referred to as the "amplitude of the
ring". The ring that is furthest away from the crown, namely,
the "base ring" has the largest amplitude. This amplitude is
referred to as the "amplitude of the dome", as indicated in
Figure 1d. In this figure, the dotted curve shows the identical
position of the base ring before "arching" of the segments. The
dome of Figure 1d is an example of a class of domes that are
referred to as scallop domes [1].

2.2. Segmental Disposition

Further examples of scallop domes are shown in Figure 2.
The dome configurations in Figures 2a and 2b are obtained by
scalloping the dome in Figure 1a. The dome in Figure 2a has
12 arches segments and the dome in Figure 2b has 3 arched
segments. In general, a scallop dome may have any number of
arched segments. If the number of arched segments is n, then
the dome is referred to as an n-segment scallop dome. Thus,
the dome in Figure 2a is a 12-segment scallop dome and the
dome in Figure 2b is a 3-segment scallop dome. The central
angle (in plan) of the arched segments of a scallop dome is
referred to as the gauge angle of the dome. The gauge angles
of the scallop domes in Figure 2a and 2b are 30 and 120,
respectively [1]. The scallop domes in Figures 1d and 1e have
an important difference with the domes in Figures 2a and 2b.
Namely, the borders of the arched segments of the domes in
Figures 1d and 1e are coincident with the meridional ribs that
subdivide the pattern of the initial dome in Figure 1a into
identical sectors. In contrast, the arched segments of the
scallop domes in Figures 2b do not have an exact
correspondence with the sectors of the initial dome. In general,
a segmental border in a scallop dome need not necessarily
correspond to any particular feature of the pattern of the
elements of the dome. Irrespective of such a correspondence,
however, the shape of a segmental border will always remain
unaffected by the scalloping process [1].

Another example of a scallop dome is shown in Figure 2d
involving 9 arched segments with a gauge angle of 40. This
dome is obtained by scalloping the dome in Figure 2c. The
pattern of the dome elements in this example is different from
that of the domes considered above. This brings out the point
that the applicability of the scalloping process does not depend
on the pattern of the elements. This is true because it is the
surface of a dome which is subjected to the scalloping process
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Fig. 1 Example of a scallop dome
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and, therefore, any pattern on the surface will simply follow
the transformation of the surface and the elements will assume
the sizes and positions dictated by the nodal points.

3. Theoretical Background of Nonlinear Analysis

In a linear static analysis it is assumed that the deflections
and strains are very small and the stresses are smaller than the
material yield stresses. Consequently, the stiffness can be
considered to independence of the displacements and forces
and the finite element equilibrium equations are linear.

P=K d (1)

where P, K and d are the external load vector, stiffness matrix
and nodal displacements vector, respectively.

This linearity implies that any increase or decrease in the
load will produce proportional increase or decrease in
displacements, strains and stresses. But it is clear that, in many
structures, at or near failure (ultimate) loads, the deflections
and the stresses do not change proportionately with the loads.
Either the stresses are so high that they no longer obey
Hooke’s law or there are such large deflections that the

compatibility equations to be linear. These two conditions are
called material nonlinearity and geometric nonlinearity,
respectively. In this study, a finite elements model based on
geometrical and material nonlinear analyses of scallop domes
including plasticity, and large deflection capabilities is
presented by opensees. In this model a 3-D uniaxial co-
rotational truss element is used. Flow rule in this model is
associative and the hardening rule is Bi-linear kinematics
hardening in tension. In compression, according to FEMA274
[22], it is assumed that the element buckles at its
corresponding buckling stress state and its residual stress is
about 20% of the buckling stress. In this case, the stress-strain
relation shown in Figure 3 is employed in this study. In this
figure, σb, σy and σu are buckling, yield and ultimate stresses,
respectively and εb, εy and εu are their corresponding strains.

In the nonlinear structural analysis process, instead of the
linear strain, a nonlinear one is used. Since the strains are
nonlinear functions of the displacements or when the stresses
reach values exceeding the yield stress of the material, the
stress to strain relationship is nonlinear. In these cases, the
stiffness is dependent on the displacements and the strains.
Obviously, the solution of the displacements can not be
obtained in a single step. Instead, the analysis is carried out by
the incremental method combined with some iterative
equilibrium corrections at every step [23]. In this work, the
arch-length method of solution is used. The steps of the
solution procedure are as follows:

1. Form tangent stiffness matrix (Kt) with the latest values of
displacements and stresses.

(2)

where Dep is elasto-plastic material stiffness matrix and Bnl is
the matrix that relates nonlinear strains to nonlinear nodal
displacements.

2. The incremental displacements equation is solved:

Dd=Kt
-1(DP+y) (3)

where DP is part of load vector to be applied at the current
increment and y is the residual force vector.

3. The incremental displacements are added to the total
displacements:

dYd+Dd (4)
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Fig. 2 More example of a scallop dome

Fig. 3 Stress-strain curve: (a) if σb < σy , (b) if σb > σy
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4. The nonlinear strains are computed based on the latest
estimate of the the incremental strains De.

5. Total stresses are computed using the linear elastic stress
strain relation:

sYs+DDe (5)

where D is elastic material stiffness matrix.
6. A check is performed to see if the estimated stresses are

within the elastic limit: If the current point is plastic, then the
computation is continued from step 7, else from step 8.

7. The elastic and plastic parts of the incremental strains are
computed.

8. Contributions of the current Gauss point to the element
internal forces are computed:

(6)

9. Residual forces are computed:

(7)

where F contains the external forces and ne is the number of
elements.

10. Incremental loads are applied at the next increment and
steps 1 to 9 are repeated until convergence.

To increase the speed and accuracy of the nonlinear analysis,
the applied loads are segmented into some loads termed sub-
steps and then, in each sub-step arch-length method is used.

4. Formulation of Optimization Problem

It is shown that consideration of nonlinear behavior in the
optimum design of structures not only provides more realistic
results, but also produces lighter structures [8-9]. Nonlinear
structural behavior arises from a number of causes, which can
be grouped into geometrical and material nonlinearity. If a
structure experiences large deformations, its changing
geometric configuration can cause the structure to respond
nonlinearly. Nonlinear stress-strain relationships are a
common cause of material nonlinear behavior. One of the main
factors that can influence a material’s properties is load history
in elasto-plastic response. 

4.1. Linear Optimization

In optimal design problem of linear scallop domes the aim is
to minimize the weight of the structure under stress and
displacement constraints at service loads. The linear
optimization problem can be expressed as follows: 

Minimize:   

Subject to: gdj(X)=dj - dju O0 , j=1,...,p                                    (8)
gsk(X)=sk - sku O0 , k=1,...,ne

where xt, gj and li are cross sectional area of members
belonging to group t, weight density and length of jth element
in this group, respectively; ng and nm are the total number of

groups in the structure and the number of members in group n,
respectively; δj and δju is the displacement of jth joint and its
upper bound, respectively; p is the number of the nodes. Also
σk and σku is the stress of kth member and its upper bound,
respectively; ne is the total number of members.

In the case of linear optimization, the allowable tensile and
compressive stresses are used according to the AISC ASD
(1989) code [24] as follows:

(9)

(10)

where E is the modulus of elasticity; Fy is the yield stress of
steel; Cc is the slenderness ratio (λk) dividing the elastic and
inelastic buckling regions (Cc =√2π2E/Fy); λk is the slenderness
ratio (λk= Klk/rk); K is the effective length factor; lk is the
member length and rk is the radius of gyration. In this case,
linear analysis is employed although it was observed that there
is not much difference between linear and geometry nonlinear
analyses for service load.

4.2. Nonlinear Optimization

In the case of nonlinear optimization, design constraints
include serviceability checks (nodal displacements at service
loads) and stability constraints to ensure the stability of the
scallop dome during the optimization process. The non linear
optimization problem can be expressed as follows: 

Minimize:   

Subject to: gdj(X)=dj-djuO0 , j=1,...,p , at service load       (11)
gf(X)=fa - fu O0
gsk(X)=sk - sku O0 , k=1,...,ne

where fa is applied load and fu is ultimate load determined by
using nonlinear analysis. Also σk and σu is the stress of kth
member and ultimate stress, respectively, which are
determined by using figure 3. In addition, the material and
geometry nonlinear analyses are used in this case.

5. Particle Swarm Optimization

In structural optimization problems, where the objective
function and the constraints are highly non-linear functions of
the design variables, the computational effort spent in gradient
calculations required by the mathematical programming
algorithms is usually large. In recent years, it was found that
probabilistic search algorithms are computationally efficient
even if greater number of optimization cycles is needed to
reach the optimum. Furthermore, probabilistic methodologies
were found to be more robust in finding the global optima, due
to their random search, whereas mathematical programming
algorithms may be trapped into local optima. In the present
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study, PSO is used.
The PSO has been inspired by the social behaviour of

animals such as fish schooling, insect swarming and bird
flocking. The PSO involves a number of particles, which are
randomly initialized in the search space of an objective
function. These particles are referred to as swarm. Each
particle of the swarm represents a potential solution of the
optimization problem. The particles fly through the search
space and their positions are updated based on the best
position of individual particles in each iteration. The objective
function is evaluated for each particle to determine the best
position in the search space. In iteration k, the swarm is
updated using the following equations:

Vi
k+1=wk Vi

k +c1r1(Pi
k-Xi

k)+ c2r2(Pg
k-Xi

k) (12)

Xi
k+1 =Xi

k+Vi
k+1 (13)

(14)

where Xi and Vi represent the current position and the
velocity of the ith particle, respectively; Pi is the best previous
position of the ith particle (called pbest) and Pg is the best
global position among all the particles in the swarm (called
gbest); r1 and r2 are two uniform random sequences generated
from interval [0, 1]; c1 and c2 are the cognitive and social
scaling parameters, respectively. The inertia weight used to
discount the previous velocity of particle preserved is
expressed by w. Also wmax and wmin are the maximum and
minimum values of w, respectively; Tmax, and T are the
numbers of maximum and current iterations, respectively.

The type of exploration mechanism of PSO enables the
algorithm to solve many optimization problems spending low
computational cost compared with other meta-heuristics.
However, in the case of large scale optimization problems,
implementation of PSO is usually confronted with difficulties
such as escaping from the local optima which decreases the
possibility of finding global optimum. In this paper, the
computational advantages of the CA are utilized in order to
mitigate the difficulties of PSO in the case of size optimization
of nonlinear scallop domes. In the next section, the
fundamental concepts of CA are briefly explained.

6. Cellular Automata

Cellular automata (CA) were firstly introduced by Von
Neumann [17] and subsequently developed by other
researchers in many fields of science. Basically, CA represents
simple mathematical idealizations of physical systems in which
space and time are discrete, and physical quantities are taken
from a finite set of discrete values. Models based on CA
provide an alternative and more general approach to physical
modeling rather than an approximation. The CA shows a
complex behavior analogous to that associated with complex
differential equations, but in this case complexity emerges from
the interaction of simple entities following simple rules [18].

In its basic form, a cellular automaton consists of a regular
uniform grid of sites or cells with a discrete variable in each
cell which can take on a finite number of states. The state of

the cellular automaton is then completely specified by the
values si=si(t) of the variables at each cell i. During time,
cellular automata evolve in discrete time steps according to a
parallel state transition determined by a set of local rules: the
variables si

k+1=si(tk+1) at each site i at time tk+1 are updated
synchronously based on the values of the variables in their
nc neighborhood at the preceding time instant tk. The
neighborhood nc of a cell i is typically taken to be the cell itself
and a set of adjacent cells within a given radius r; i-rOncOi+r.
Thus, the dynamics of a cellular automaton can be formally
represented as follows [25]:

(15)

where the function q is the evolutionary rule of the
automaton.

One of the most important features of CA is the
neighborhood structure. For updating the value of a cell, its
own value and the values of neighboring cells should be
considered. Configuration of the neighborhood structure is
highly problem dependent and depends on the nature of the
physical phenomenon that should be modeled. Clearly, a
proper choice of the neighborhood plays a crucial role in
determining the effectiveness of such a rule. In this paper, the
widely used Moore neighborhood of interaction [25], by r=1,
is adopted as shown in Figure 4. In this figure, the Moore
neighborhood of the central cell is shown by gray region.

7. Enhanced Particle Swarm Optimization

In the recent years, many researchers have attempted to
improve the computational performance of PSO algorithm.
The followed computational strategies in this regard include
two main classes. In the first class, researchers have combined
PSO with the other optimization algorithms. For examples,
two such optimization algorithms have been proposed by
Gholizadeh and Salajegheh [26] and Kaveh and Talatahari
[13]. In the second class, basic velocity equation of the
standard PSO has been enhanced by adding some additional
terms to it.  As an example, Li et al. [12] proposed such
modified equation. In the present paper, following the idea of
the second class to discover a novel optimization mechanism
through simulation of a social model, a new term is added to
basic velocity equation of the standard PSO based on concepts
of CA. The CA technique can be combined with the
evolutionary algorithms to solve numerical optimization
problems. In the field of structural optimization, Canyurt and
Hajela [27], Rajasekaran [28], Salajegheh and Gholizadeh [29]
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Fig. 4 Moore neighborhood
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and Gholizadeh [30] have combined the concepts of CA and
genetic algorithm (GA) to create cellular genetic algorithms
(CGA). Also, Gholizadeh [18] has combined CA and PSO to
optimize a number of benchmark linear structural optimization
problems.

In the present paper CA and PSO are integrated and a cellular
automata-based PSO algorithm is proposed to optimal design
of linear and nonlinear scallop domes. In the proposed EPSO
algorithm, particles are distributed on discrete locations of a
2D rectangular grid. The state variables associated with each
cell site are simply the design variables of the optimization
problem. In the traditional PSO, the particles’ velocity and
position in the search space is updated by applying Eqs. (12)
to (14). In the EPSO, the updating process is accomplished
based on a rule of the automaton. In this case, in the search
process besides the global information, the local information
of the Moor neighborhood of each central site is used to
efficiently update its position in the design space. When the
swarm has been updated, the evolutionary rules of the
automaton are repeated until one of the stopping criteria is
met. In both the PSO and EPSO, the objective function of the
optimization problem is employed to define the fitness of each
design vector. In this paper, a new velocity updating equation
is presented.

In the proposed EPSO algorithm, a swarm of potential
designs is structured on a 2D grid. In this case, each site
contains a real-valued vector describing of a design and
therefore the state of the cellular automaton in each site is a
design vector of design variables as follows:

(16)

The proposed cellular velocity updating equation acts on the
design variables and combines the global information (pbest
and gbest) and the information available at the central site and
its immediate neighbors as follows:

(17)

where r3 is a uniform random number generated from
interval [0, 1]; c3 is a scaling parameter. Xi,j is the jth particle
in immediate neighbors of ith central cell.

In each iteration or in each discrete time step, the proposed
equation produces a new design at each site according to the
following equation:

(18)

(19)

In comparison with Eq. (12) of standard PSO algorithm, Eq.
(19) in EPSO uses more information to update the velocity of
particles. In this case, the difference between the design
variable vector of each site and an average vector of design
variables associated to its neighboring sites is added to the
basic velocity updating equation. This new term decreases the

probability of premature convergence to the gbest and
therefore increases the chance of finding the global optimum
or near global optima.

In [18], another CA based term was added to Eq. (12) and
improved PSO was proposed for linear optimization of truss
structures. In the present study, the mentioned improved PSO
is used for nonlinear optimization of scallop domes and it is
observed that the EPSO converges to better solutions
compared with the mentioned improved PSO. Therefore, in
this work for brevity the results of EPSO are compared only
with those of standard PSO.

The values of algorithm parameters, ωmin, ωmax, c1, c2 and c3
can seriously affect the computational performance of the
EPSO algorithm. A sensitivity analysis is performed and the
results reveal that the best values of the parameters are as
follows: ωmax = 0.9, ωmin = 0.4, c1 = 1.0,  c2 = 2.0 and  c3 = 1.0.

The flowchart of the proposed EPSO algorithm is shown in
Figure 5.
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Fig. 5 Flowchart of the proposed EPSO algorithm
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8. Numerical Results

In the present work, two double layer scallop domes with 8
and 10 segments are considered. For both the scallop domes
the span is 50.0 m, the height is 10 m and the layer thicknesses
is 1.5 m. The configuration of the mentioned scallop domes is
shown in Figure 6. Young’s modulus, mass density, yield stress
and ultimate stress are 2.1×1010 kg/m2 (205.9 GPa), 7850
kg/m3 (76.98 kN/m3), 2.4×106 kg/m2 (235.4 MPa), and
3.6×106 kg/m2 (353.0 MPa), respectively. The computational
time is measured in terms of CPU time of a PC Pentium IV
3000 MHz. A uniformly distributed load of 250 kg/m2 (2.4517
kN/m2) is applied on the horizontal projection of the top layer.

The number of particles for PSO is 25 and for EPSO the same
number of particles is distributed on a 5x5 discrete grid. The
maximum number of iterations for both algorithms is limited to
400. For linear optimization, the stress constraints are checked
according to Eqs (9) to (10) and the allowable vertical
deflection is 5.00 cm. For nonlinear optimization, the
constraints of Eq (11) are taken in to account. In the linear
optimization process, the factors of safety (FS) is applied on the
element tensile and compressive stresses as given by Eqs (9)
and (10), respectively. For nonlinear optimization, FS is
applied on the external loads. In this case, by considering FSs
of 1.6 and 2.0, the scallop domes are optimized to bear the
external loads of 400 kg/m2 (3.9227 kN/m2) and 500 kg/m2

(4.9033 kN/m2) while their corresponding maximum deflection
at the service load (2.4517 kN/m2) are limited to 5 cm. The
discrete design variables are selected from a set of standard
Pipe profiles listed in Table 1. In this table, cross-sectional area
and radius of Gyration are given by A and r, respectively.

For all examples, the structural elements of each layer are
divided into three groups and therefore the optimization
problem includes nine design variables:

XT={AGroup1,AGroup2,AGroup3,AGroup4,AGroup5,AGroup6,AGroup7,AGroup8,AGroup9}
(20)

During the nonlinear optimization process, for each element
a strain-stress curve is considered according to its buckling
stress. It is important to note that for all structural elements σy,
σu and their corresponding strains are identical.

8.1. Example 1: A 1200-bar 8-Segment Double Layer Scallop Dome

The plane views of the 8-segment scallop dome together with
its element groups are shown in Figure 7.

The optimization task considering linear and nonlinear
behaviors are achieved using PSO and EPSO algorithms and
the results are given in Table 2. 

In the case of linear optimization for service load of 250 kg/m2

(2.4517 kN/m2), the optimal weight corresponding to EPSO is
4.86% better than that of the PSO. For nonlinear optimization
processes for ultimate loads of 400 kg/m2 (3.9227 kN/m2) and
500 kg/m2 (4.9033 kN/m2), the EPSO converges to solutions
which are 4.75% and 4.32% lighter than solutions found by PSO.
Also in the all cases, EPSO requires less generations compared
with the PSO. The results show that, the computational
performance of the EPSO is better than that of the PSO in terms
of optimal weight and number of required generations. 

The stresses of the critical elements in the nine groups of the
optimum designs found by EPSO are compared with their
corresponding upper bound values in Table 3.
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Table 1 The available list of standard Pipe profiles (TUBO-)
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Fig. 6 Double layer scallop dome with (a) 8 and (b) 10 segments
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Fig. 7 The 8-segment scallop dome with its relative element groups
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Numerical results demonstrate that all of the found optimum
designs are feasible. It is important to note that by taking into
account nonlinear behaviour of the scallop domes the structural
weight can be considerably reduced compared with the linear one. 

Convergence histories of the linear optimization processes,
for service load of 250 kg/m2 (2.4517 kN/m2), are compared
with those of the nonlinear optimization processes, for
ultimate loads of 400 kg/m2 (3.9227 kN/m2) and 500 kg/m2

(4.9033 kN/m2), in Figure 8 for PSO and EPSO algorithms.

The load-deflection diagram of the top node of the optimum
scallop domes found by EPSO for ultimate loads is also shown
in Figure 9.

Also, for the nonlinear optimum design subject to ultimate
load of 500 kg/m2 (4.9033 kN/m2), the incremental distributed
load-vertical displacement curves of a number of selective
nodes are shown in Figure 10.

The results show that the nonlinear optimization process, for
ultimate load of 500 kg/m2 (4.9033 kN/m2), converges to a
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Table 3 Stresses of the critical elements in the nine groups of the optimum designs found by EPSO
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Fig. 8 The convergence history of the linear optimization process
(for service load of 250 kg/m2) and nonlinear optimization processes

(for ultimate loads of 400 and 500 kg/m2) for the first example
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Fig. 9 Nonlinear deflection of the top node of the 8 segmented
scallop domes for ultimate loads
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Fig. 10 Nonlinear deflection of the top and bottom layers’ nodes of the shown part of the optimum 8 segmented scallop dome subject to
ultimate load of 500 kg/m2
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solution with the weight of 516.919 kN which is lighter than
594.296 kN (13.02%) of the linear optimization process, for
service load, while the FS of former (2.0) is considerably
larger than that of the later (about 1.6). These observations
demonstrate that the by considering nonlinear behaviour of
scallop domes it is possible to find designs having higher FS
and lighter weight compared with linear optima.  

8.2. Example 2: A 1500-bar 10-Segment Double Layer 
Scallop Dome

The plane views and element groups of the 10-segment
scallop dome are shown in Figure 11.

The results of optimization using PSO and EPSO algorithms

considering linear and nonlinear behaviors are given in Table 4. 
In the case of linear optimization the optimal weight found

by EPSO is 4.51% lighter than that of the PSO. For nonlinear
optimization processes subject to ultimate loads of 400 kg/m2

(3.9227 kN/m2) and 500 kg/m2 (4.9033 kN/m2), the EPSO
converges to solutions which are 4.32% and 5.74% lighter than
solutions found by PSO. Also in the all cases, EPSO requires
less generations compared with the PSO. The results show
that, the computational performance of the EPSO is better than
that of the PSO in terms of optimal weight and number of
required generations. 

The stresses of the critical elements in the nine groups of the
optimum designs found by EPSO are compared with their
corresponding upper bound values in Table 5.

86 R. Kamyab, E. Salajegheh

Fig. 11 The 10-segment scallop dome with its relative element groups
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Numerical results demonstrate the feasibility of all of the
found optimum designs. It is shown that by taking into account
nonlinear behaviour of the scallop domes the structural weight
can be considerably reduced compared with the linear one. 

Convergence histories of the linear optimization processes
are compared with those of the nonlinear optimization
processes in Figure 12 for PSO and EPSO algorithms.

Also the load-deflection diagram of the top node of the
optimum scallop domes found by EPSO for ultimate loads is
shown in Figure 13.

As well as the first example, for the nonlinear optimum
design subject to ultimate load of 500 kg/m2 (4.9033 kN/m2),
the incremental distributed load-vertical displacement curves
of a number of selective nodes are shown in Figure 14.

The results show that the nonlinear optimization process
using EPSO, for ultimate load of 500 kg/m2 (4.9033 kN/m2),
converges to a solution which is 11.23% lighter than that of the

linear optimization process, for service load, while the FS of
former is considerably larger than that of the later. This implies
that by considering nonlinear behaviour of scallop domes it is
possible to find optimum designs having higher FS and lighter
weight compared with linear optima.  

9. Conclusions

The present study deals with size design optimization of
scallop domes for static loading. The cross-sectional areas of
the element groups are the design variables and the weight of
the structure is the objective function of the optimization
problem. Two optimization processes considering linear and
nonlinear behavior of the structure are included. In the
nonlinear optimization process, geometrical and material
nonlinearities are involved. In the present work, PSO is
selected as the optimizer and its computational performance is
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Table 4 Comparison of linear and nonlinear optimal designs found by PSO and EPSO
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Table 5 Stresses of the critical elements in the nine groups of the optimum designs found by EPSO
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Fig. 12 The convergence history of the linear optimization process
(for service load of 250 kg/m2) and nonlinear optimization processes

(for ultimate loads of 400 and 500 kg/m2) for the second example
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Fig. 13 Nonlinear deflection of the top node of the 10 segmented
scallop domes for ultimate loads
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improved using the concept of CA. The original PSO can not
control the balance between exploration and exploitation. To
eliminate this difficulty and also to reduce the number of
required structural analyses during the optimization process,
EPSO is proposed in this study. In the proposed EPSO, the
particles are distributed on a small dimensioned grid and the
artificial evolution is evolved by a new velocity updating
equation. In which the velocity updating rule is defined by
adding a new CA-based term to the conventional equation. In
the sequel, an efficient optimization algorithm, denoted as
EPSO, is consequently employed to achieve the difficult
nonlinear optimization task. In the linear optimization process,
stress and deflection constraints are checked and in the
nonlinear optimization process the displacement constraints
are considered at service load of 250 kg/m2 (2.4517 kN/m2)
while the stability constraints are checked at the applied
ultimate loads. In this paper, the factors of safety (FS) in the
linear optimization process, is applied on the element tensile
and compressive stresses, while for nonlinear optimization, FS
is applied on the external loads. In this case, by considering
FSs of 1.6 and 2.0, the scallop domes are optimized to bear the
external loads of 400 kg/m2 (3.9227 kN/m2) and 500 kg/m2

(4.9033 kN/m2).
The results show that, the computational performance of the

EPSO is better than that of the PSO in terms of optimal weight
and number of required generations. The numerical results
also show that in all of the mentioned cases, the nonlinear
optimization processes converge to solutions which are lighter
than those of the linear optimization. This means that,
considering nonlinear behaviour of scallop domes one can find
optimum designs with higher FS and lighter weight compared
with linear optimum designs.   

References

Nooshin H, Tomatsuri H, Fujimoto, M. Scallop domes. IASS97
Symposium on Shell & Spatial Structures: Design, Performance
& Economics, Singapore, 1997.
Gholizadeh S, Barzegar A. Shape optimization of structures for
frequency constraints by sequential harmony search algorithm,
Engineering Optimization, 2012; 45: 627-646
Gholizadeh S, Salajegheh E, Torkzadeh P. Structural
optimization with frequency constraints by genetic algorithm
using wavelet radial basis function neural network, Journal of
Sound and Vibration, 2008; 312: 316-331.
Kaveh A, Farhmand Azar B, Talatahari S. Ant colony
optimization for design of space trusses, International Journal of
Space Structures, 2008; 23: 167-181.
Gholizadeh S, Fattahi F. Design optimization of tall steel
buildings by a modified particle swarm algorithm, The
Structural Design of Tall and Special Buildings, 2012, DOI:
10.1002/tal.1042.
Kaveh A, Talatahari S. Size optimization of space trusses using
Big Bang-Big Crunch algorithm, Computers and Structures,
2009; 87: 1129–1140.
Optimal design of barrel vaults using charged search system Ali
Kaveh, Mahdi Sagharjooghifarahani, Nasim Shojaei,
International Journal of Civil Engineering Volume 10, Number 4.
Saka MP, Ulker M. Optimum design of geometrically nonlinear
space trusses, Computers & Structures, 1991; 41: 1387-1396.
Saka MP, Kameshki ES. Optimum design of nonlinear elastic
framed domes, Advances in Engineering Software, 1998; 29:
519-528.
McKenna F, Fenves G. The Opensees Command Language
Manual, 1st ed., 2001.
Eberhart RC, Kennedy J. A new optimizer using particle swarm
theory, Proceedings of the Sixth International Symposium on
Micro Machine and Human Science, Nagoya, Japan, 1995, pp.
39-43.
Li LJ, Huang ZB, Liu F, Wu QH. A heuristic particle swarm
optimizer for optimization of pin connected structures,

88 R. Kamyab, E. Salajegheh

Fig. 14 Nonlinear deflection of the top and bottom layers’ nodes of the shown part of the optimum 10 segmented scallop dome subject to
ultimate  load of 500 kg/m2

�
�

�
�

�

�

�

�

�

	

��

�
��

���
���
���
���

� �$� �$� �$�
�����������	�
�

��
�

�	�
��



� �

�
��

���
���
���
���

� �$� �$� �$� �$� � �$� �$�
�����������	�
�

��
�

�	�
��



� �

�
��

���
���
���
���

� �$�� �$�� �$		 �$�� �$��
�����������	�
�

��
�

�	�
��



� �

�
���
���
	��
���
���

� � � � � ��
�����������	�
�

��
�

�	�
��



� �

�
���
���
	��
���
���

� � � � � ��
�����������	�
�

��
�

�	�
��



� �

�
���
���
	��
���
���

� � � � � ��
�����������	�
�

��
�

�	�
��



� �

�
���
���
	��
���
���

� �$� � 
$�
�����������	�
�

��
�

�	�
��



� �

�
���
���
	��
���
���

� � � 	 �
�����������	�
�

��
�

�	�
��



� �

�
���
���
	��
���
���

� � � � �
�����������	�
�

��
�

�	�
��



� �

�
���
���
	��
���
���

� � � 	 � �
�����������	�
�

��
�

�	�
��



� �

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
25

 ]
 

                            12 / 13

https://www.iust.ac.ir/ijce/article-1-731-en.html


Computers and Structures, 2007; 85: 340–349.
Kaveh A, Talatahari S. Particle swarm optimizer, ant colony
strategy and harmony search scheme hybridized for
optimization of truss structures, Computers and Structures,
2009; 87: 267–283.
Gholizadeh S, Salajegheh E. Optimal design of structures for
time history loading by swarm intelligence and an advanced
metamodel, Computer Methods in Applied Mechanics and
Engineering, 2009; 198:  2936–2949.
Optimal design and operation of irrigation pumping systems
using particle swarm optimization algorithm M.H. Afshar, R.
Rajabpour, International Journal of Civil Engineering Volume 5,
Number 4.
Gholizadeh S, Seyedpoor SM. Shape optimization of arch dams
by metaheuristics and neural networks for frequency
constraints, Scientia Iranica, 2011; 18: 1020-1027.
Von Neumann J. Theory of self-reproducing automata, A. W.
Burks, (Eds.), University of Illinois Press, Champaign, Ill, 1966.
Gholizadeh S. Optimum design of structures by an improved
particle swarm algorithm, Asian Journal of Civil Engineering,
2010; 11:  779–796.
Topolgy Optimization of Structures using Cellular Automata
with Constant Strain Triangles Ebrahim Sanaei, Mehdi Babaei,
Volume 10, Number 3.
Angeline P. Evolutionary optimization versus particle swarm
optimization: philosophy and performance difference.
Proceeding of the Evolutionary Programming Conference, San
Diego, USA; 1998.
The Language of Technical Computing. MATLAB. Math Works
Inc, 2006.
Federal Emergency Management Agency. NEHRP guidelines
for the seismic rehabilitation of buildings, Rep. FEMA 273

(Guidelines) and 274 (Commentary), Washinton, DC, 1997.
Crisfield MA. Non-Linear Finite Element Analysis of Solids
and Structures, John Wiley & Sons, Volume 1: Essentials,
Chichester, 1991.
AISC: American Institute of Steel Construction, Manual of steel
construction-allowable stress design, 9th ed. Chicago, IL; 1989.
Biondini F, Bontempi F, Frangopol DM, Malerba PG. Cellular
automata approach to durability analysis of concrete structures
in aggressive environments, Journal of Structural Engineering,
2004; 130: 1724–1737.
Gholizadeh S, Salajegheh E. Optimal seismic design of steel
structures by an efficient soft computing based algorithm,
Journal of Constructional Steel Research, 2010; 66: 85–95.
Canyurt OE, Hajela P. A cellular framework for structural
analysis and optimization, Computer Methods in Applied
Mechanics and Engineering, 2005; 194: 3516–3534.
Rajasekaran S. Optimization of large scale three dimensional
reticulated structures using cellular genetics and neural
networks, International Journal of Space Structures, 2001; 16:
315–324.
Gholizadeh S, Salajegheh E. A Cellular Genetic Algorithm for
Structural Optimisation, In B.H.V. Topping, J.M. Adam, F.J.
Pallares, R. Bru, M.L. Romero, (Ed), Proceedings of the Tenth
International Conference on Computational Structures
Technology, DATE, Stirlingshire: Civil-Comp Press, 1-14, 2010.
Gholizadeh S. Optimum Design of Structures for Earthquake
Loading by a Cellular Evolutionary Algorithm and Neural
Networks, In V. Plevris, C.C. Mitropoulou, N.D. Lagaros,
(Editors), “Structural Seismic Design Optimization and
Earthquake Engineering: Formulations and Applications”, IGI
Global, USA, Chapter 12, 306-322, 2012.

International Journal of Civil Engineering, Transaction A: Civil Engineering, Vol. 11 No. 2, June 2013 89

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
25

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            13 / 13

https://www.iust.ac.ir/ijce/article-1-731-en.html
http://www.tcpdf.org

